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Abstract

I have presented a means of getting a representation space of a general linear group of
dimensions in terms of homogeneous functions of n, n-dimensional vectors. Except in
particular cases, the representation is of the Lie algebra, rather than the group. A general
formalism is set up to evaluate the Casimir operators of the Lie algebra of the group in
terms of the degrees of homogeneity of the functions (which are eigenfunctions of the
Casimir operators) in the n variables. It is noticed that the Casimir operators exhibit
certain symmetries in these degrees of homogeneity which relate different representations
having the same eigenvalues for the Casimir operators. Contour integral formulas that
enable one to pass from one such representation to another are presented. An expression
for the eigenvalues of a general Casimir operator in terms of the degree of homogeneity
is presented.

1. Introduction

The work for this paper arises from some work done on twistors (Penrose,
1967), based on certain suggestions made by Prof. R. Penrose. Twistors are
“vectors” of the representation space of U(2, 2). Now SU(2, 2) is locally -
isomorphic to the 15-parameter conformal group of compactified Minkowski
space and to O(2, 4). The results for twistors are analogous to the results for
two-component spinors — “vectors” of U(2), SU(2) being locally isomorphic
to O(3). I have attempted to set up a formalism in which the Casimir operators
of the Lie algebra of any linear group can be easily expressed and in fact may
be read off from a general formula. The results apply equally to unitary and
other groups, as well as to linear groups. The reason why the Lie algebra is
used instead of the group will become clear later. The representations will be
given in terms of multivariable functions that are homogeneous in all the
variables. The variables are “vectors” of the representation space of the algebra.
It will be easily seen that the number of variables required is the dimension of
the representation space.

The *“‘canonical generators™ are defined in terms of the variables and
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derivatives with respect to those variables. Contractions of the canonical
generators, among themselves, so that no free indices are left, give the Casimir
operators, The number of linearly independent Casimir operator is the rank

of the group. The functions used for getting representations of the algebra are
eigenfunctions of the Casimir operators. The original interest in these functions
was because they tied in with certain expressions for the solutions of the

zero rest mass field equations (Penrose, 1969). The Casimir operators are
found to possess certain symmetries using one which can give a general expres-
sion for the eigenvalues of any Casimir operator of the Lie algebra of a linear
group.

The methods used here are inspired by the method of Gel’fand et al. (1966)
to get representations of SL(2, C) and of GL(2, O).

The paper is presented in the following way. First, representations of
GL(n, C) are dealt with. Then a theorem is proved for the functions giving
representations of the Lie algebra of GL(n, C'). Then the Casimir operators are
defined and worked out for GL(2, C), GL(3, C) and GL(4, C). It is observed
that these Casimir operators possess certain symmetries. It is proved that all
Casimir operators of the Lie algebra (not of the group) possess this symmetry.

2. Representations of GL(n, C)

Consider a function f(£), homogeneous of degree p in a complex n-compo-
nent vector £2, i.e.,

AE) = APf(£%) (2.1)
In particular, f(£%) might be expressible as a polynomial of degree p in £2, i.e.,
FED=f, .. &% & (22)

where f;. ... = fg...cy. Such f,... . can be represented by the Young tableau

p

(LT 11
All such f;....’s form a (p + 1)-dimensjonal, irreducible representation space
for GL(n, C). Such polynomial expressions are nonsingular for all £%. In
general, however, f(£4) is nonsingular only over some domain, being singular
somewhere outside that domain. In such a case f(£%) will give a representation
of the Lie algebra of the group, rather than the group itself, because the domain
is shifted by the action of the group but is not shifted by the action of the

algebra. An f(£%) can be constructed such that p is a positive integer, but f(£%)
cannot be expressed as a polynomial in £4, e.g., withp =+1,

fEY) =Labéa§b/Kc§c 2.3)
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cannot be expressed as a polynomial in general. Such functions spav an infinite-
dimensional representation space of the Lie algebra of GL(n, C). If p is not
a positive integer, f(§2) leads to an irreducible representation space.

To see that f(£9) gives a representation of the Lie algebra of the group, first
consider two elements of the group % and J . If we want to expand close to the
identity, we can put %=1+ eU and J = 1+ €T, where ¢ is infinitesimal. Let
Uand T be given by U :E = U3£” and T:E=T%£%. Then

RNE) =fE")+ eULE S, ie. RF(E) = UpE"flog”
(RNE) =f(") + THEP0f/08", e, RF(E) = ThE 0f/0¢"
© RAR)E) = £ (U + THOfPE)(E) = §- (U +T) - (f/0E) (®)
[R. RIf(®)= £°(U7 T§ — TaUp)(@f13:)(E")
=§(U-T~T-U)- (205)(®)

It can easily be checked that these functions satisfy all the requirements of 2
representation space, the operators being represented by & - U - (3/38). The
representation is of an algebra, instead of being of a group, because the func-
tion will often be singular for some value of £2 (for reasons which become
apparent later). Thus the action of the group shifts the domain over which
f(§9) is nonsingular. Now if the transformations of £2 are infinitesimal and
the function is nonsingular over some domain, the transformed function will
be nonsingular over the same domain. Thus representations of the algebra are
valid, but of the group they are not valid.

I shall now prove a theorem for these functions, taking them to be of n
variables for GL(n, C). 1 shall explain what they represent later.

Theorem 1: For functions, homogeneous in n (r-dimensional) vari-

ables W%, X2, . . ., Z%, the following statements are equivalent:
Lfwe, xb, .., Z9 =f(W* +\X% X?, ..., 79)

=f(we +22° X%, .. ., 7% (2.42)
2.X*offowe =---=Zag3ffawe =0 (2.4b)

3.f(wa, Xb, .. Z9)y=gWlx? . 74 Xk ..., Zm) (2.4c)

Proof: (i) We know that

@aN)f(We + 21X, XP, ..., Zd) = Xe(d/daWe)f(Wa + \Xe, X?, . ., Z9)
Now (1) implies that 8f/0X = 0. Thus we have X¢(3f/dW¢) = 0 and similarly
up to Z¢(af/oW¢) = 0. Thus (1) = (2).

(ii) Defining 9f/dWe = f,, we can write f, = €;p... 4 K? "9 where
Kb d =K@ d) Now from (2) we have

€ab...d.Kb-”an B :é‘ab...de'“dZa ={

Thus we have

X[aKb...d] P '=Z[aKb"'d] =0
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Thus Kb d represents a hyperplane containing the vectors X4, . . ., Z4. Thus
Kb do xlbe o Zdl Now (3) requires that £ should be constant when
whx? .. z9 wk .. . Z™ are constant, i.e., treating W9, . . ., Z9 as the basic

variables and V any vector defined on the space of which W", .. Z9 are the
coordinates

vwlx? - z9 x¥ . . Z™=0=Vf=0
where we write V= V{(8/0W?) + V5(0/6X%) + - - - + V4(3/6Z%). This gives us

we,..,.ve/skext -..z4 o0 0 - 0\ (V% ..., V) oflowe

whagl ...z sk g ... 0 affoxe
W[aXbBZ o.z9 52... 0l=0= . =0
whex? ...ys9d o o ---87 offez’

for all V, i.e., that the column vector is linearly dependent on the square matrix.
To see that (2) implies this, we reduce the matrix by subtracting the appropriate
multiple of each later column from the first column, so as to obtain a diagonal
matrix with §’s on the diagonal, except for the first term, which is 6 “X VAl
thus we require that whenever (2) is true of/0W® is linearly dependent on

slx? ... 7% This has already been proved. Thus we can write fiWe,

Xxe, ..., z%H=gWhx® ...,z9 x* ... z™). Thus(2)=(3).

(111) Clearly 3)=(1),as any arbltrary multip]e of X4,...,Z%, when added
to W9, will be skewed with X1? . . . 29l and will thus give zero. Thus (1) =
(2)=(3)=(1). Hence (D ¢ (2) < (3).

Consider a function f(£9, #7), homogeneous of degrees g and p in £° and
n?, respectively, such that

FE* + %, 0?) = (8%, )
In the particular case when f(£%, n%) can be written as a polynomial

A&, nb) =fae e'--gsa‘ R 3 SRR
where fy...cec..g =fa-c)(e---g) a8 fa . (ce- - g) =0  Allsuch f... ce ... s
form an irreducible representation space of the Lie algebra of GL(n, ), if
f(&2, n?) is singular outside some domain (inside which it is nonsingular). The
fa---ce--.g’s can be represented by the Young tableau

14

| ||
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If we are considering GL(2, C), £2 and n? are two-component complex
vectors. In that case f(§4, n?) satisfies the conditions for Theorem 1. Thus
we can write

fE*, ) = £1(X, n?) = X9g(n?) (2.5)

where g(n?) is homogeneous of degree (p — ¢) inn?, X = eabé"”b. This
method will be used often later.

If one is dealing with SL(2, C) then X = 1. In terms of Young tableau, the
previous Young tableau would become

— -

I R

This can be generalized for SL(n, C).
The functions used for getting representations of the Lie algebra of GL(n, C)
satisfy the condition that

W+, X0, 28 == WOz, KO Z) = (e XD
+pY?, . ZY) = f(We, XP +pzb, . ZY == f(W, X, .29

and they are homogeneous in W, X2, . .., Z9 of degrees p, q, . . ., 5. If they can
be expressed as polynomials, i.e.,

FWa X2, L ZY = fhcog i p WO WEXE - X8

xYk-..ymzn...zpP (2.6)
where
Jariceghomn—p=fa--cye--g)(k---m)(np)
and
foicegk-- py=tace o (gk--myn--p
=fa---(ce---g)k-~mn--~p=fa-~ce~-(glk--~m1n--»p)
=fa--(clegk--min---p) = fr... (cle---glk- myn--p =0
Allsuch f,... .. .p’s span an irreducible representation of the Lie

algebra of GL(n, C) They can be expressed by the Young tableau

Ry iza
q xe

ad
7 W
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If one deals with SL(n, C) the Young tableau becomes

(s —p) }7...’»}-‘_}2“

(g-p) X°

In terms of the functions we have
JWe, X0, .. 29 =yPg(X?, ..., Z% 2.7

and for SL(n, C), v =1, y being ;... 4 W2 X0 - - - Z9,

For convenience I shall use the notation n® for the set of vectors
(Wa,X4,...,Z%), a running from 1 to z as does 2. Thus n? is W*, 7% is X*
and so on until %" is Z%. The equation (2.4) is equivalent to

™) = f(kEn®) (2.8)

where kf, =0 fora <b, =1 fora = b and has some sufficiently small value for
a > b. For such f’s it is easy to see that

N*%eef(n“")=0  fora>p
=hgf(n°") fora=g

where 3, = 08/01%, i.e., 8,4 = 0/3W?, etc., up to d,, = 8/dZ%. We can write
7y as

2.9

Y=€4ii by Y ! 2.10)
¥

I shall now define the Casimir operators and then evaluate them for GL(2, C),
GL(3,C) and GL(4, O).

3. Casimir Operators

The canonical generators are defined by
K3 = 00000 = 1°*8gq + 15 ER))
All contractions of these will give Casimir operators. Thus
K=Kz  Ky=KPKE,  K;=KPKEKS, ete.

are Casimir operators. The set {K;} (=1, ..., n) are linearly independent
Casimir operators, all other Casimir operators may be expressed in terms of
these.

It is easily seen that the functions defined by (2.9) are eigenfunctions of
the Casimir operators by commuting the appropriate n9%’s past the d,’s [so



LIE ALGEBRAS OF LINEAR GROUPS 31

that (2.9) can be used] and adding in the extra term. In fact it is for this reason
that the representation was chosen to be of the form satisfying (2.9).

Consider the case of GL(2, C). Here we have only the Casimir operators to
work out:

K1 f(PP) = (0%, + 285)f(n®F) = ( Jat 4) Fn"%)
= (hy +hy +4)f(n%) (3.2)
Ko F(0°) = (03an°%05an* ) F(0°Y) = (880,61 + Baa®*n* P840 f(n°Y)
Using (2.9) we can write

Ko f(n7) = (2K + hoDaa®®+ 05xn°* 1% 0 ))f ()

where x <y and where f1,,0,,m%¢ stands for (3, (7?1} Ay + - - - + (8,19 A,,.
Now we have

e

(aaxnbxnayaby)f(nc’y) = ( Z; 7'?ayaay + nbxnayabyaax) f(ne7), x<y
Xy

since 0,y 05y = Opy 04y Using (2.9) again, with x <y, we have

(n bxnayabyaax)f(ncy) = (nbxaby N0 — Z N84 ) f(7°7)

y>x
1 shall write
n
2
x<y=1
for
n n-—1

y=x+1 x=1

. Thus we have

K fne) = (zm FOIS hat SIS (hy - hx)) fnem)

a=] @=] x<y=1
= (8 + 3k, + 5hy + h% + W3 f(neY) (3.3)

The Casimir operators for GL(3, C) and GL(4, C) are worked out and given
in the Appendix. The expressions for the Casimir operators K, rapidly become
too cumbersome for higher values of n and larger values of ¢. The situation
becomes much more manageable if we replace the degrees of homogeneity by
what I shall call “numbers of homogeneity” defined by

Ni=h;—i+1 (3.4
Now for GL(2, C) we get

2K f=[B+ Wy +N)ISf

(3.5)
*Kayf=[4+3(N; +N,)+NT + NS
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For GL(3, C) we get
3Ky f =16+ (N +N, t NS
3Kof =[10+4W, + N, +Ny)If
3Ksf =[15+10(N; + N, + N3)+ S(V?3 + N3 + N%)
+ (NN, +NoN3 +N3N;) + (N +N3 +N3)f (3.6)
For GL(4, C) we get
K f=[10+(Vy + Ny + N3 + Np)l f
4K, f=[20+5(N; + Ny + N3 +Ng) + (V2 + N3+ N3+ NS
YK f= {35+ 15N, + Ny + N3 + Ng) + 6(N? + N3 + N3 + N3)
+ [Ny(Ny + N3+ Ng) + Nay(N3 + Ng) + N3Ny
+ (VI N+ NS HND)S
AK4f= {56+ 35V, + N, + N3 +Ng)+ 21(N3 + N3 + N3 +N3)
+6[Ny(Ny + N3 +Ng)+ Ny(N3 + Ng) + N3N, ]
+ NIV, + N3 +N,) + N3(V3 + N,g) + N3N,
+ [N, (V3 + N3 +N3)
+ N, (N3 +N3) +N3N3] + TV + N3 + N3 +N3)
+ (N + NS+ N3+ NDYf 3.7

The eigenvalue expression of the Casimir operators can be still more simply
expressed as symmetric combinations of the numbers of homogeneity:

n n
S =2 N;, 8§,=3N?, etc
i=1 i=

i=1
2K f=(3+S)f
2K, f=(4+38 +8,)f
SKif=(6+8))f
3K f=(10+4S; +8,)f
3Kaf=(15+108, +3S2 + 418, + S5)f
‘K f=(10+8)f
K, f=(20 + 58, +S,)f
‘K3f=(35+155, +18% + 548, +S3)f
4K,f=(36+355, +352 +3S} + 185, + 6345, +5,)f (3.8)
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To appreciate the simplicity of these results, compare the *Kq with the corre-
sponding values for U(2, 2) given by Tsu Yao (1967, 1968). I shall now con-
sider the effect of restricting to SL(n, C) from GL(n, C).

4. Restriction to SL{n, C}

The formalism given earlier can be used to get the Casimir operators when
the group is unimodular instead of general, i.e., for SL(n, C) instead of
GL(n, C), by making the canonical generators traceless and defining the Casimir
operators as contractions of the new generators. Calling the canonical generators
(SK)Z, we have

(SK); =Kg — (1/n)K 82 CRY)
(SK{)=(SK)2=0 (4.2)
As an example, consider the case of n =4,
(SK)2 = (Kg — 4K, 53)(KS — 3K ,68) =K, — 4K} 4.3)
(SK)3 = (K2 — 4K, 85)(K§ — 4K, 85) (K& — §88) = K3 — 3K, K, + 3K3
4.4)

(SK)a = (KG — 3K, 88)(K§ — 3K, 85)(KE — }s0)(K5 — ho%)
=K — K3K; +3K,K? “-3)

The reader will have noticed that the Casimir operators of the unimodular
case are quite complicated.

5. The Symmetry Properties of the Casimir Operators

In Section 3 the Casimir operators of GL(2, C), GL(3, C), and GL(4, )
were shown to be symmetrical in the numbers of homogeneity of the eigen-
functions of the operators. The proof that the Casimir operators of GL(n, C)
are symmetric in the numbers of homogeneity (which will be presented now)
depends on the functions being singular somewhere, but having a domain
over which they are nonsingular.

Consider a function

f* ) =rwe, .., Z% (.1
such that
(™) = f(n'**) where n'** = (k§ + 6§) ¢
=0 ifa>8

= some small constant if a <

(5.2)
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Theorem 1 can be used because of (5.1):
fwe, . zh=gwle, .z xP, . 7% (5.3)

where f is homogeneous of degrees iy, . . ., i, in W2, . . ., Z9, respectively.
Hence we can write

fwe, .., Z9=y"F(XP,... 2" (5.4)

where v = €,...gWl2 - - - Zd] where F, is homogeneous of degrees h, — h,,
conhy —hyInXP, ..., Z7, tespectively. Consider an F,(X?, .. ., Z") with
the same degrees of homogeneity as F'; (X7, ..., Z") and with appropriate
singularities around which one can perform contour integrals. We can then
define [as was done for SL(2, C) by R. Penrose (1967, 1968, 1973)]

FWe, .., ZP) =" § Fy(WP +0,2°, .. Y + 020 )y - ... . d),
(5.5)
This can be written as
F@ ™) = $ iy a, ..., (5.6)

where pl¢® = AL%n9%;

00 00 1
ale_[ 1000

01 0--°0 As

00 0---1 2, (5.7

Clearly K is not affected by transforming n*® by A&& as we shall have
105 = V8,0, where Vi, A}* = 8%. Thus

Kb =0,am"* =0;,n" ¥ = K2 (5.8)
Similarly we define
GWe, ..., 2% =" 3€ Fy(Z8, XP 4020, Y+ 0ZDdNs - ... . d\,
(5.9)
which can be written as
6™ = § rm** D - ... -dh, (5.10)

WhePe nza& o Ai&naa
1 0 0---0 0
~ {0 0 0---0 1
A2 = (5.11)
0 0 0---1 2,
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As before, K2 is not affected by transforming n9® by A2%. We have the relation-
ships
ALSVI5=8Gsh Ay =885 (1,7=1,2) (5.12)

I shall now show that the numbers of homogeneity of # and G are permu-
tations of the numbers of homogeneity of fand that they satisfy the condition
(2.8). I shall then prove that F and G have the same Casimir operators as f and
hence that K is symmetric in the numbers of homogeneity

FOWe, ..., AZ) =" 4 § Fy(WP + ANZP, ... Y"
FANZD ANy ...~ dNy

Change the variables A; to A; = A\;. Then
F(W?, .. L AZ%) =N 4" §Ry(WP 420,27, .., Y7
N ZNV ANy o o ANy = AT W 29) (5.13)
F(W°,.. ., BY®,BZ%) = y" B § Fy(WP + BA,ZP, ..,
XBIY' +NZ" D dny- - d,

Now F, is homogeneous of degree s, —hy in Y" + \,,Z". Since there are now
only n — 2, X’s to be changed to A\’s,

F(W4, ... ,BY¢ BZ9)y=pm*hi—nt2pye | |y, 79

(5.14)
F(We,...,BY, ZH =B 1R(Wwe, . . Y29
Similarly, we can continue to
Fwe,DXx%,... 29 =D g(we, x?, ..., Z% (5.15)
FEWA, X%, ..., Zz9=E"" E(we, x?, ..., 29 (5.16)

Thus, if the numbers of homogeneity of fare (N, . . ., N,,), the numbers of
homogeneity of F are (N,, . . ., N,,, Ny), i.e., cyclic permutations of Ny, . . ., N,,.

GW*, ..., AZ%) =" Al § Fy(4Z°, X2 + 0,20, Y

d
(5.17)
X ZNANs .~ ... dh, = AT G(W, L Z9)

G(We, .. ,BY®, ZH =R IGwe, ..., Y%, Z% (5.18)
GW DX, ...,Z%) =Dh*\g(we, x?,.. ,Z9) (5.19)
GEW*, X? .., ZH=E"MGw*, x>,....Z2%9 (5.20)

Thus the numbers of homogeneity of G are (Ny, N3, . . .,N,, N,), i.e., leaving
Ny alone, cyclic permutations of N,, . . ., N,,. One could similarly start with
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functions having’the same homogeneity degrees as £ or G and get further permu-
tations of the V; s:

FOWA, .. Y +KZ°, 2% =" § Fy(WP +0,2°, .. YT +KZ"
PN AsY: VU dhn,

Defining a new A, = A, +k, d\}, = d\,,. Thus
FWe,... Y +kz¢,Z)=F(W*,...,Y° Z9 (5.21)
To see how this works for other combinations it is convenient to consider, as
an example, GL(4, C). Then from
F(we, X% + k7%, v°, 79y = F(W* + kZ%, X, Y, Z9) = F(W?, X?,Y¢,Z9)
(5.22)
follows as before:
F(w®, X% +kY?,Y¢,Z%) = 4™ f Fy(W*+0,Z% X2 +kYP + 222, Y¢
+0Z)dN, ~ dAz ~ dNg
Using (5.21) we get
FWe, XP + kY2, ¥, 2% =y™ § Fy (W +0,2° X + (A ~ kNg)Z”, Y°
+ 2 Z)dNy -~ d); . dN4
Defining A3 = A3 — k)4, we get dA5 = dA3 — kdhs. Now we have dAy - dAg =0,
hence d\3 ~ dAg = dA3 - dA4. Thus
F(We, X% +kY®, Y, 29 =F(W*, X?,Y°,Z9 (5.23)
Similarly
FWe+kY? X2, Y, 2% =F(W*, X?,Y¢,Z9) (5.24)
FOW? + kX%, XP, ¥4, 29) = o™ § Fy(W* + kX + 2,2, XP + 0,27, Y°
FMZO) Ny . dhg - dAg =7 § Fy(W+ (g — BA5)Z% X°
+ 0328, Y+ M Z)dNy ~ drg ~ dhg
Defining Xy = A, — k)3, it is clear that we get
FW* + kX, X, v°, 29 =F(w*,X?,v°,Z9 (5.25)
Similarly for G(W?, X?, Y°, Z%) in GL(4, C) we get
GW+ kZ%, X2, Y, Z =GW* +kY*?, X°,Y°, Z9) = G(W*
+kX?, X2, Y6, Z9) = G(W?, XP,Y¢,Z9 (5.26)
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as we have W? appearing only in v”+ and hence skewed with X®, Y and
Z9. Also

GW®, XP, Y +kZ¢, 2% =G(W?*, X? +kZ?,Y°,Z2%) = G(W*, X, Y°, 29

(5.27)
as in the proof of (5.21).
GW?, Xb +kY?, v°, 29 =G(W*, X?, Y, 29 (5.28)
as in the proof of (5.23).
Hence
Theorem 2: If f(n®*) are homogeneous functions satisfying (2.8), the
functions

Fn™) = § fm ™) d, . ... . dh,
G(n™) = § Fn@)dhs ~ ... - dN,

satisfy (2.8), and their numbers of homogeneity are permutations of
the numbers of homogeneity of f(n%%).

Since K2 is unaffected by the transformations n%® - ™% (i = 1, 2), we see
that the eigenvalue of F is the same as the eigenvalue of f. Similarly for G.

Theorem 3: "K 4 are symmetric in the numbers of homogeneity for all
values of # and q.

Writing down the most general form for the eigenvalues of "Kq in terms of
numbers of homogeneity of its eigenfunctions, so that it is symmetric in them,
we have

n q q—1
Ko f(n®®) = (2 > KgmyNF + 2 2
j=ip=0 =2 nherEl B
pl- .. ]
p <qz- el Kq(P"'p,') N"i Nll,’l_l)f(naoz) (5.29)

where K, and Ko(p, ...py 2re combinatorial factors given by

n+tg—1
Kow,..op= ( q—-s ) (5.30)

where

I
si=]§1 Py Koo,) = Kqp)
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This may be seen to follow from the number of ways the canonical genera-
tors can be commuted.
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Appendix

From now on I shall write f instead of f(n°Y). Also, to simplify the calcu-
lations, I shall put terms that are already calculated (or may easily be calculated)
into {) brackets and ignore them until the end of the calculation. I shail now
work out the Casimir operator of GL(3, C):

Klf = (aaanaa)f= (62‘162 + naaaaa)f
3
=(3x3+§ha)f=(9+h1+h2+h3)f (A1)
a=1

Ko f = (0,an°%8,80°8)f = (858,4m°* + 8,4m°*1%050)f
= ((3K ) +had,on®® + 3,n™* 0P85 (x <)

=( %ka(3+ka)>+< (h “hx))

Kof =(27 +4h, +6h, +8h3+h2 +h2 +h3) (A2)
Ksf =(K2K§8,,m)f = ((3K5) + KZaban""n“"aw)f
= (hgK20pgn® + K50p:n“n0c)f  (x<y)
3
= ( Z hBK> + hﬁaaanbanasabﬁ + (A )) f
B8=1
= (h20,am% + My 00?0y )  (x <)

=( 23 h§(3 +ha> + % hy, hy — hx>)f
a=1 x<y=1

Af= (aaanbaabx"?cxnay acy)f

= (3a1?NEN P ey Opy + 2 05”0 3p))f
x<y

= (aaancxnayacy"?t’aabx - aay"?bxnayabx

+ X hyaayﬂay+ 2 aaw"?bw'nayaby)f w<y)
x<y x<y
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= {kxnaxn""n"y ey + 8o NP By 0pyx

_ }3; Ry(hy + 3)> + < % hy(3 +hy)>
x<

x<y=1

+< % hy-—hw)>}f r<x<y)
x,wy=y
3

{ DS (hxhy—kx)>+< 3 (ku—hx)>}f
x<y=1 p<x<y=1

K3f=(81+ 13k +25h, +43hy + 5h% + 813 + 1143 + hyh,
+hohy +hahy +hY +h3 +h)f (A3)

I shall now work out the Casimir operators of GL(4, C) (cf. Qadir, 1971):

4
Ky f=(8,am*)f = (8368 + 1%%0,0)f = (4 x4+ Zl ha)
a=
=(}6 +h1 + h2 +h3 +h4)f (A4)

Ko f =(K20p5n™)f = (4K 1) + 0,am°*n"®0pg) f
= (haaaanaa + aax"?bxnayaby)f

4 4
= ( &Z:l ho(4+ haz)>+ <x<%=l(ky - kxp) !

Kof=(64+5h, +Thy +9hy + 11k, +h3 +h3 +h3 +h3)f (A5)
Ksf = (KEK§0m" N = ((4K,) + K5055n 070, )f
= (hgK 5 0pan™ + K2 0pnn“8)f
4
=( 2 hSKI> +h86aan§anaﬁab6 +<4 >)f
B=1
= (hgaaanaa + hyaaxnbxnayaby)f
4 4
= Z hgz@' * ha) + z hy(y - hx) f
a=1 x<y=t
Af = (aaaﬂb&ncxnayacyabx + Z aaaﬁbanayaby)f
x<y

= (340N Dy N *dpx — 3oy ™M™ Vs
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+ 3 hydgn® T 3awn”n0py)f
x<y x<y

= (hxaaxncxnaya + 0 ® acynbvabx)f

—[ hy(hy +4)> < 2 h(4+hy)>
x<y1

+ *, - w)>}
w x<y =1
= [ 2 X(h - hx)> < (hv et hx)>jl f
x<y=1 v<x<y=1

K3f=(256 +21hy +35h,y +55h, + 81hy + hy(hy + hy +hy) + hy(hs + hy)
+hghy +6h3 +9R3 + 1203 + 15K +h3 + K3 +h3 + BD)f  (A6)
Kaf = (KEKEK33a5m™)f = ((4K3) + KOK §0,m* 0% 345)f
= (1, KEK$ . n®Y + KZK§30yn™ 0™ 0g,)f
4
= (h5K 53,61 + hyK 5850 dcy)f
4
(5 g o)
=1

= (h38,an"" + h20,an” 0P o) f

[ Zh(4+ha)> < h;(hy—hx)]f

(h aaanbancxnayacyabx"' z h aaan 7 yab)f
x<y
(h h aaxnbxnayaby t+h aawnbw'ncxnayabxacy
- z hxhyaaynay+ Z th’aaynay'l' Z hyaaznbznayaby)f
x<y x<y x<y

w<x<y,z<y)

4
(5 e )
x<y=1 Zx<y1

% hxhy(hy+4)>+< z hxhy(hy_hx)>
x<y=1 x<y=1
+ Z hy(hw - hx)>]f

w<lx<y=1
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Bf= ( <Z K23pan®n® 0y, + KL3,snPn® “Zacyadz)f
y<z

( 2 hyKEop.m®+ 3 K3, n®d., +(D })f
y<z y<z

=( z hyKl + z hzaaanbanazabz+<c>)f
y<z=1 y<z

4
Bf = Z hgaaz'naz'l' Z hzaaxnbxnazab2>f

y<z y<z

= { % hg(hz + 4)> < z(hz - hx)>j‘ f
y<z=] x,y<z=1

4 4
cf= ( Z aaomba??azabz + Z aga??baﬂcxndzaczabx) f
x,y<z y<z

y<z 4
i ( Z hzdazn®® + z aawnbwnazabz * Z Oac N %
x,y<z x,y<z y<z

at:z'ribmabx - Z aaznbxnazabx) f (w <z)
y<z

A5 ) o
xy<z~.1 w,x ,y<z—1

+ Z By daxn %0, + Z Oawn® n"zaczn”“’abx
y<z y<z

- hy(h, + 4)> (w<x)
,y<z~—1

4
= { Z hylhs — hx)> Cxabxnbzacz

x,y<z=1 w<x y<z

+ z chabxnazacz??bwa&w f
y<z

- K s (hw«hx)>] !
wxix,y<z=1
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Df= (hngabyndynazadz -2 hngabznaz
y<z

+Kgabxncxndy77azacyadz) f (x<y)
y<z y<z

= ( Z hyK(lz)"?azabz"'h aaanbandynazadzaby‘ Z hngnazabz

—< 2 hyK1>+ 2. aaaabandynazabyadz

y<z=1 x<y

+ aaanbancxndyn azacy 04z abx) f

Df= ( - Z h}laaznaz + hjzzaaynbynazabz +hyaaxnbxncynazabyacz

y<z
+ 2 9 nbwncyﬂ”aby ecz— 2 h aaznaz + > h aay
x<y x<y x<y

w<y,x<y)

T'bynazabz + 2 hydam** — 2 hx0gy
x<y<z x<z

nbynazabz + hxaaxncxndynazacyadz +

aum 0 *n® n“zabxacyadz) o w<x)

4
= [— h2(h, +4)> < hi(h, —hy)>
y<z=1 y<z=1
4 4
+ < 2 hyh +4> + < > *,, —hy)>
x<y<Lz=1 w,x<y;y<z=1
4
- 2 hyhyt 4)> < hy(hz — hx)>
x<y<z=1 x<y<z 1

+< 5 (hy—hw>>f
v<x<y<z=1
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Kaf = (1024 +85h, + 155h, +258h, + 499k, + h{(8hy + 10h3 + 124,)

+hy (1205 + 14h,) + 16h3h, + 27h% + 53h3 +91h3+ 14473
+hy(h3 + 1+ 1E) + ho(h] + hE) + hahy + i (hy + s + hy)
+h3(hy +hy) + kg + THS + 1143 + 1583 + 19R3

+hi+hs+h+R31f
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